Journal of Organometallic Chemistry, 410 (1991) 111-116 Elsevier Sequoia S.A., Lausanne JOM 21661

Metallkomplexe mit biologisch wichtigen Liganden

LIX *. Darstellung und Struktur des chiralen Chloro(dimethylsulfoxid)(η^5 -pentamethylcyclopentadienyl)thyminatoiridium(III)

Roland Krämer, Kurt Polborn und Wolfgang Beck *

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, W-8000 München 2 (Deutschland) (Eingegangen den 14. Dezember 1990)

Abstract

The chloro-bridged complex $[Cp^*IrCl_2]_2$ reacts with thyminate in the presence of dimethylsulfoxide to give the chiral complex Me₂(O)S(Cp^{*})(Cl)Ir(thyminate). X-ray diffraction shows N1-bound thyminate and S-coordinated DMSO in the crystal which contains both S_{Ir} and R_{Ir} enantiomers.

Zusammenfassung

Der chloro-verbrückte Komplex $[Cp^*IrCl_2]_2$ setzt sich mit Thyminat in Gegenwart von Dimethylsulfoxid zum chiralen Komplex Me₂(O)S(Cp^{*})(Cl)Ir(thyminat) um. Die Röntgenstrukturanalyse zeigt N1-koordiniertes Thyminat und S-gebundenes DMSO im Kristall, der beide Enantiomere (S_{Ir} und R_{Ir}) enthält.

Im Zuge der Untersuchung der Wechselwirkung von Metall-Ionen mit DNA wurden auch metallorganische Komplexe, die Nucleobasen und Nucleoside enthalten, als Modellverbindungen dargestellt [2-4]. Im folgenden berichten wir über die Darstellung und Struktur eines metallorganischen Thyminato-Iridium(III)-Komplexes. Das ambidente Koordinationsverhalten des Thyminat-Anions wurde von verschiedenen Arbeitskreisen untersucht [2a,5].

Darstellung

Thyminat reagiert mit dem chloro-verbrückten Komplex $Cp^{*}(Cl)Ir(\mu-Cl)_{2}Ir(Cl)Cp^{*}$ [6] in einem DMSO/Wasser/Methanol-Gemisch unter Substitution von Chlorid.

^{*} LVIII. Mitteilung siehe Ref. 1.

Es ist bekannt, daß sich die Chlorbrücken des hier eingesetzten Komplexes mit verschiedenen N-Donoren spalten lassen [7,8]. Das Cp^*Ir^{2+} -Fragment bildet in DMSO Solvens-Komplexe mit Schwefel als Donor-Atom [7a].

Röntgenstrukturanalyse (Tab. 1-3, Fig. 1)

Im Kristall von 1 werden die Enantiomeren S_{Ir} und R_{Ir} als kristallographisch unabhängige Moleküle mit geringfügig verschiedenen Bindungslängen und -winkeln im Verhältnis 1:1 gefunden.

Thyminat ist N1-koordiniert. Diese Koordination wurde z.B. auch in verschiedenen Thyminato-Platin(II)- und Kupfer(II)-Komplexen röntgenographisch nachgewiesen [5,9]. Das Ir-Atom besitzt pseudotetraedrische Umgebung. Der Ir-N-Abstand (2.12 Å) ist ähnlich lang wie der Metall-N-Abstand in Thyminato-Platin(II)-Komplexen [9b-d]. In beiden Enantiomeren steht das H6-Atom des Thyminat-Rings *endo* zum Chloro-Liganden.

Spektroskopische Daten

Im ¹H-NMR-Spektrum (270 MHz, CDCl₃, int. TMS, ppm) wird für die Thyminat- und Cp*-Protonen ein doppelter Satz von Signalen mit etwa gleichen Intensitäten gefunden (=CH: 8.70 (s,br), 7.55 (s); CH₃: 1.91 (s), 1.50 (s); Cp*: 1.76 (s), 1.67 (s)). Dies kann entweder auf das Vorliegen von N1- und N3-metallierten Isomeren [5a] oder von Konformeren in Lösung zurückgeführt werden. In einem Molekül-Modell erscheint die Drehung des Thyminat-Rings um die Ir-N-Achse behindert. Die DMSO-Methyl-Gruppen werden durch das stereogene Ir-Atom diastereotop (DMSO-CH₃: 3.25 s,br, 3.11 s,br). Das NH-Signal wird nicht beobachtet.

Im IR-Spektrum von festem 1 (in KBr) sind die CO-Absorptionen (cm^{-1}) bei 1660sh, 1643ss, 1633s charakteristisch für N1-koordiniertes Thyminat [5a]. Weitere typische IR-Absorptionen treten bei 3142 (m, NH), 1130 (s, SO), 284 (w, IrCl) cm^{-1} auf.

		-	••• •		
	x	у	Z	U _{eq}	
Ir(1)	207(1)	5249(1)	1837(1)	31(1)	
Cl(1)	1630(3)	4867(2)	1198(1)	57(1)	
S(1)	561(2)	6726(1)	1667(1)	42(1)	
O(1)	2115(6)	6263(2)	2598(2)	45(2)	
O(2)	5697(6)	4172(3)	3005(2)	55(2)	
O(3)	-465(6)	7353(3)	1901(2)	58(2)	
N(1)	2454(6)	5097(5)	2145(2)	35(2)	
N(2)	3975(6)	5234(4)	2766(2)	40(2)	
C(1)	2790(9)	5581(5)	2498(2)	36(3)	
C(2)	4754(9)	4421(5)	2728(2)	39(3)	
C(3)	4373(8)	3942(4)	2350(2)	34(2)	
C(4)	3273(9)	4298(5)	2088(3)	40(3)	
C(5)	5142(10)	3050(4)	2269(2)	56(3)	
C(6)	2566(8)	7113(5)	1679(3)	61(3)	
C(7)	146(10)	6885(5)	1117(2)	56(3)	
C(8)	-2410(8)	5298(6)	1848(3)	48(3)	
C(9)	-1921(11)	4463(6)	1678(3)	55(3)	
C(10)	- 1018(10)	4007(5)	1987(3)	45(3)	
C(11)	- 969(9)	4555(5)	2363(2)	40(3)	
C(12)	- 1781(9)	5357(5)	2277(2)	37(3)	
C(13)	- 3541(10)	5950(6)	1646(3)	89(5)	
C(14)	-2329(12)	4113(8)	1248(3)	100(6)	
C(15)	- 304(11)	3080(4)	1955(3)	71(4)	
C(16)	- 227(10)	4334(5)	2785(2)	60(3)	
C(17)	-2075(10)	6093(6)	2588(3)	66(4)	
Ir(2)	- 818(1)	95(1)	393(1)	32(1)	
Cl(2)	280(3)	803(1)	-226(1)	53(1)	
S(2)	- 102(3)	- 1225(1)	82(1)	40(1)	
O(4)	1684(7)	-1040(4)	997(2)	56(2)	
O(5)	4900(7)	1151(3)	1500(2)	55(2)	
O(6)	-615(6)	- 2050(3)	286(2)	53(2)	
N(3)	1453(7)	314(4)	676(2)	39(2)	
N(4)	3281(7)	74(4)	1233(2)	42(2)	
C(21)	2088(9)	- 266(6)	963(2)	39(3)	
C(22)	3860(10)	938(5)	1240(3)	42(3)	
C(23)	3130(9)	1514(5)	935(3)	42(3)	
C(24)	2020(9)	1177(5)	671(3)	44(3)	
C(25)	3608(11)	2485(5)	936(3)	68(4)	
C(26)	- 903(10)	- 1274(5)	- 444(2)	59(3)	
C(27)	1969(9)	-1293(6)	- 29(3)	63(4)	
C(28)	- 3279(11)	529(7)	309(3)	58(4)	
C(29)	- 3277(9)	-287(7)	521(3)	52(3)	
C(30)	- 2422(9)	- 180(6)	913(3)	41(3)	
C(31)	- 1987(10)	728(6)	942(3)	44(3)	
C(32)	- 2446(11)	1165(7)	567(3)	61(4)	
C(33)	-4123(11)	745(8)	- 98(3)	118(6)	
C(34)	-4127(11)	- 1132(6)	402(3)	94(5)	
C(35)	-2264(11)	- 884(6)	1253(3)	72(4)	
C(36)	- 1119(11)	1114(6)	1319(3)	74(4)	
C(37)	- 2172(12)	2130(6)	456(3)	117(5)	

Tabelle 1 Atomkoordinaten (×10⁴) und äquivalente isotrope Auslenkungsparameter ($pm^2 \times 10^{-1}$) von 1^{*a*}

⁽³⁾ ⁽³⁾

•				
Ir(1)-Cl(1)	239.9(3)	Ir(1)-S(1)	230.2(3)	
Ir(1) - N(1)	212.0(5)	Ir(1)-C(8)	218.0(7)	
Ir(1) - C(9)	218.7(9)	Ir(1)-C(10)	217.9(8)	
Ir(1)C(11)	218.7(7)	Ir(1)-C(12)	216.3(7)	
S(1)-O(3)	146.8(5)	S(1)-C(6)	176.8(7)	
S(1)-C(7)	178.0(7)	O(1)-C(1)	121.1(9)	
O(2) - C(2)	123.0(9)	N(1)-C(1)	135.5(10)	
N(1)-C(4)	139.3(10)	N(2)-C(1)	139.8(9)	
N(2)-C(2)	138.9(9)	C(2)-C(3)	142.5(10)	
C(3)-C(4)	134.3(10)	C(3)-C(5)	150.8(10)	
Ir(2)-Cl(2)	240.0(3)	Ir(2)-S(2)	229.2(3)	
Ir(2) - N(3)	211.4(6)	Ir(2)-C(28)	216.7(9)	
Ir(2) - C(29)	216.4(8)	Ir(2)-C(30)	214.9(8)	
Ir(2)-C(31)	219.6(9)	Ir(2)-C(32)	217.2(10)	
S(2)-O(6)	146.0(5)	S(2)-C(26)	178.5(7)	
S(2)-C(27)	176.2(8)	O(4)-C(21)	121.6(11)	
O(5)-C(22)	123.3(10)	N(3)-C(21)	136.2(10)	
N(3)-C(24)	138.1(10)	N(4)-C(21)	140.3(9)	
N(4)-C(22)	138.5(10)	C(22)-C(23)	142.5(11)	
C(23)-C(24)	134.1(11)	C(23)-C(25)	151.3(11)	

Tabelle 2

Ausgewählte Bindungsabstände (pm) in 1

Tabelle 3

Ausgewählte Bindungswinkel (°) in 1

$\overline{\text{Cl}(1)-\text{Ir}(1)-\text{S}(1)}$	88.5(1)	Cl(1)-Ir(1)-N(1)	85.4(2)
S(1) - Ir(1) - N(1)	95.6(2)	Ir(1)-S(1)-C(6)	115.7(3)
Ir(1)-S(1)-O(3)	115.4(2)	Ir(1)-S(1)-C(7)	109.2(3)
O(3)-S(1)-C(6)	109.2(3)	C(6)-S(1)-C(7)	99.2(4)
O(3)-S(1)-C(7)	106.7(3)	Ir(1)-N(1)-C(4)	117.8(5)
Ir(1)-N(1)-C(1)	119.9(5)	C(1)-N(2)-C(2)	127.4(6)
C(1)-N(1)-C(4)	118.0(6)	O(1)-C(1)-N(2)	119.1(7)
O(1)-C(1)-N(1)	124.9(7)	O(2)-C(2)-N(2)	120.4(6)
N(1)-C(1)-N(2)	115.9(6)	N(2)-C(2)-C(3)	114.3(6)
O(2)-C(2)-C(3)	125.3(7)	C(2)-C(3)-C(5)	119.7(6)
C(2)-C(3)-C(4)	117.6(6)	N(1)-C(4)-C(3)	126.7(7)
C(4)-C(3)-C(5)	122.7(7)	Cl(2)-Ir(2)-N(3)	86.0(2)
Cl(2) - Ir(2) - S(2)	86.5(1)	Ir(2)-S(2)-C(26)	109.5(3)
S(2) - Ir(2) - N(3)	94.7(2)	Ir(2)-S(2)-C(27)	112.9(3)
Ir(2) - S(2) - O(6)	118.1(2)	C(26)-S(2)-C(27)	100.4(4)
Ir(2) - N(3) - C(21)	121.7(5)	Ir(2)-N(3)-C(24)	116.6(5)
C(21)-N(3)-C(24)	118.3(6)	C(21)-N(4)-C(22)	126.6(7)
O(4) - C(21) - N(3)	124.3(7)	O(4) - C(21) - N(4)	119.4(7)
N(3)-C(21)-N(4)	116.3(7)	O(5)-C(22)-N(4)	119.9(7)
O(5)-C(22)-C(23)	125.8(7)	N(4)-C(22)-C(23)	114.3(7)
C(22)-C(23)-C(24)	118.7(7)	C(22)-C(23)-C(25)	118.2(7)
C(24)-C(23)-C(25)	123.1(7)	N(3)-C(24)-C(23)	125.7(7)

Fig. 1. Struktur der beiden Enantiomeren von 1 im Kristall.

Experimentelles

Chloro-dimethylsulfoxid (η^5 -pentamethylcyclopentadienyl)thyminatoiridium(III) (1)

Zu einem Gemisch aus 5 ml Methanol und 1 ml Wasser werden 0.400 mmol (50.4 mg) Thymin und 0.400 ml methanolische KOH-Lösung (1.00 M) gegeben. Die klare Lösung tropft man langsam unter Rühren zu 0.200 mmol (159 mg) $[Cp^*IrCi_2]_2$ [6] in 2 ml DMSO. Das Methanol wird im Vakuum entfernt, wobei aus dem DMSO-Wasser-Gemisch bereits etwas 1 ausfällt. Man friert bei -20 °C ein, läßt auftauen und saugt den gelben Niederschlag sofort ab. Durch Überschichten einer CH₂Cl₂-Lösung mit Hexan werden gelbe Kristalle erhalten.

Ausbeute 165 mg (73%); Schmpt. (Zers.) 200 °C. (Gef.: C, 35.95; H, 4.72; N, 4.97; S, 5.71. $C_{17}H_{26}ClIrN_2O_3S$ ber.: C, 36.07; H, 4.63; N, 4.95; S, 5.66%. Molmasse 566.1).

Röntgenstrukturanalyse von 1. Kristallgröße $0.2 \cdot 0.3 \cdot 0.4$ mm. Kristalldaten: $C_{17}H_{26}$ ClIrN₂O₃S, M = 566.1 g/mol, Raumgruppe $P_{21}2_{12}2_{1}$ (Nr. 19), a = 832.6(2), b = 1503.0(3), c = 3141.9(7) pm, V = 3.9317 nm³, Z = 8, $\zeta_{ber} = 1.913$ g/cm³, μ (Mo- K_{α}) = 70.2 cm⁻¹. Datensammlung und Auswertung: CAD-4-Diffraktometer, Meßtemperatur 21°C, ω -Scan, 2θ Bereich 4–50°, Scan-Geschwindigkeit max. 90 s/Reflex, 5720 Reflexe gemessen, 4934 beobachtet, $[I > 2\sigma(I)]$, empirische Absorptionskorrektur im ϕ -Scan (minimale/maximale Transmission 0.402/0.994). Lösung und Verfeinerung mit dem SHELXTL-Programmsystem, 451 Parameter verfeinert, H-Atome in berechnete Lagen eingesetzt, alle Nichtwasserstoffe anisotrop, R = 0.024, $R_w = 0.021$ ($w = 1/\sigma^2$ (F_0)), maximale/minimale Restelektronendichte $0.95/-1.99 \cdot 10^{-6}$ e · pm⁻³ in der Nähe von Ir. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55119, der Autorennamen und des Zeitschriftenzitats angefordert werden.

Dank

Der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der Degussa A.G., Wolfgang, danken wir herzlich für großzügige Förderung.

Literatur

- 1 I. Zahn, K. Polborn, B. Wagner und W. Beck, Chem. Ber., im Druck.
- 2 (a) W. Beck und N. Kottmair, Chem. Ber., 109 (1976) 970; (b) M.M. Singh, Y. Rosopulos und W. Beck, ibid., 116 (1983) 1364; (c) Y. Rosopulos, U. Nagel und W. Beck, ibid., 118 (1985) 931; (d) N. Kottmair und W. Beck, Inorg. Chim. Acta, 34 (1979) 137; (e) W. Beck, J.C. Calabrese und N. Kottmair, Inorg. Chem., 18 (1979) 176.
- 3 D.W. Abbot und C. Woods, Inorg. Chem., 22 (1983) 597.
- 4 (a) W.S. Sheldrick und B. Günther, Inorg. Chim. Acta, 151 (1988) 237; 152 (1988) 223; idem, J. Organomet. Chem., 375 (1989) 233; 402 (1991) 265; (b) W.S. Sheldrick und S. Heeb, Inorg. Chim. Acta, 168 (1990) 93; W.S. Sheldrick und P. Bell, Inog. Chim. Acta, 160 (1989) 25; (c) G. Pneumatika-kis, A. Yannopoulos und I. Markopoulos, Chim. Acta, 151 (1988) 243.
- 5 Reviews: (a) B. Lippert, in S.J. Lippard (Ed.), Platinum, Gold and Other Metal Chemotherapeutic Agents, ACS Symposium Series 209, American Chemical Society, Washington DC, 1983, p. 147; (b) M. Goodgame und D.A. Jakubovic, Coord. Chem. Rev., 79 (1987) 97; (c) B. Lippert, Progr. Inorg. Chem., 37 (1989) 1.
- 6 (a) J.W. Kang, K. Moseley und P.M. Maitlis, J. Am. Chem. Soc., 91 (1969) 5970; (b) W.P. Fehlhammer, W. Herrmann und K. Öfele, in G. Brauer (Ed.), Handbuch der Präparativen Anorganischen Chemie, F. Enke, Stuttgart, 1981, Bd. 3, S. 1961 und 1963.
- 7 (a) P.M. Maitlis, Acc. Chem. Res., 11 (1978) 301; (b) P.M. Maitlis, Chem. Soc. Rev., 10 (1981) 1.
- 8 Vgl. z.B.: R. Krämer, K. Polborn, H. Wanjek, I. Zahn und W. Beck, Chem. Ber., 123 (1990) 767.
- 9 (a) T.J. Kistenmacher, T. Sorrell und L.G. Marzilli, Inorg. Chem., 14 (1975) 2479; (b) B. Lippert, R. Pfab und D. Neugebauer, Inorg. Chim. Acta, 37 (1979) 1495; (c) R. Faggiani, B. Lippert, C.J.L. Lock, Inorg. Chem., 19 (1980) 295; (d) R. Faggiani, B. Lippert, C.J.L. Lock und R. Pfab, ibid., 20 (1981) 2381.